Unreliability of Radiometric Dating and Old Age of the Earth

Dating techniques

how is carbon dating used to determine the age of a substance

For example, one isochron yielded a date of 10 billion years. It belongs to group 14 of the periodic table. How often does one have two or three different isochrons on the same system yielding very similar dates? So magma should have at least 20 times as much argon as a rock million years old by K-Ar dating. This effect may be significant going back even only to the time of Christ, and might also be a factor in why 14c dating of the artifacts of the Pharaohs were not as helpful as had been hoped for in resolving debates in chronology among Egyptologists. And this can also happen by water flowing through the rock through tiny cracks, dissolving parent and daughter elements. If you were to measure Ar40 concentration as function of depth, you would no doubt find more of it near the surface than at deeper points because it migrates more easily from deep in the earth than it does from the earth into the atmosphere.

Footer Menu

Archived PDF from the original on Carbon fiber is made by pyrolysis of extruded and stretched filaments of polyacrylonitrile PAN and other organic substances. Though it may be an extremely negligible source, of the various emissions from radioactive decay alpha particles, beta particles, etc. The carbon cycle is considerably more complicated than this short loop; for example, some carbon dioxide is dissolved in the oceans; if bacteria do not consume it, dead plant or animal matter may become petroleum or coal , which releases carbon when burned. So we have a number of mechanisms that can introduce errors in radiometric dates.

And yet, with a large amount of argon in the air and also filtering up from rocks below, and with excess argon in lava, with argon and potassium water soluble, and argon mobile in rock, we are still expecting this wisp of argon to tell us how old the rock is! The percentage of Ar40 is even less for younger rocks. For example, it would be about one in million for rocks in the vicinity of 57 million years old.

To get one part in 10 million of argon in a rock in a thousand years, we would only need to get one part in 10 billion entering the rock each year. This would be less than one part in a trillion entering the rock each day, on the average. This would suffice to give a rock having an average concentration of potassium, a computed potassium-argon age of over million years! We can also consider the average abundance of argon in the crust. This implies a radiometric age of over 4 billion years.

So a rock can get a very old radiometric age just by having average amounts of potassium and argon. It seems reasonable to me that the large radiometric ages are simply a consequence of mixing, and not related to ages at all, at least not necessarily the ages of the rocks themselves. The fact that not all of the argon is retained would account for smaller amounts of argon near the surface, as I will explain below.

This could happen because of properties of the magma chambers, or because of argon being given off by some rocks and absorbed by others. I don't see how one can possibly know that there are no tiny cracks in rocks that would permit water and gas to circulate. The rates of exchange that would mess up the dates are very tiny.

It seems to me to be a certainty that water and gas will enter rocks through tiny cracks and invalidate almost all radiometric ages. Let me illustrate the circulation patterns of argon in the earth's crust.

So argon is being produced throughout the earth's crust, and in the magma, all the time. In fact, it probably rises to the top of the magma, artificially increasing its concentration there. Now, some rocks in the crust are believed not to hold their argon, so this argon will enter the spaces between the rocks. Leaching also occurs, releasing argon from rocks. Heating of rocks can also release argon.

Argon is released from lava as it cools, and probably filters up into the crust from the magma below, along with helium and other radioactive decay products. All of this argon is being produced and entering the air and water in between the rocks, and gradually filtering up to the atmosphere. But we know that rocks absorb argon, because correction factors are applied for this when using K-Ar dating. So this argon that is being produced will leave some rocks and enter others.

The partial pressure of argon should be largest deepest in the earth, and decrease towards the surface. This would result in larger K-Ar ages lower down, but lower ages nearer the surface. So this confirms that argon can travel from rock to rock when one rock is heated. Now, argon is very soluble in magma, which can hold a lot of it:.

After the material was quenched, the researchers measured up to 0. They noted, 'The solubility of Ar in the minerals is surprisingly high'. I note that this concentration of argon, if it were retained in the rock, would suffice to give it a geological age well over nillion years, assuming an average concentration of potassium.

This is from a paper by Austin available at ICR. This paper also discusses Mount St. Helens K-Ar dating, and historic lava flows and their excess argon. So magma holds tremendous amounts of argon. Now, consider an intrusive flow, which cools within the earth. All its argon will either remain inside and give an old age to the flow, or will travel through surrounding rock, where it can be absorbed by other rocks.

So magma should have at least 20 times as much argon as a rock million years old by K-Ar dating. In fact, the argon in the magma may well be even higher, as it may concentrate near the top. This amount of argon is enough to raise 20 times the volume of magma to a K-Ar age of million years, and probably times the volume of the magam to an age of 57 million years. So one sees that there is a tremendous potential for age increases in this way. It is not necessary for this increase in age to happen all at once; many events of this nature can gradually increase the K-Ar ages of rocks.

In general, older rocks should have more argon because they have been subject to more exposure to such argon, but their true age is not necessarily related to their K-Ar radiometric age. We can also consider that most volcanoes and earthquakes occur at boundaries between plates, so if the lava has flowed before, it is likely to flow again nearby, gradually increasing the age.

I suppose earthquakes could also allow the release of argon from the magma. Other mechanisms include dissolving of rock, releasing its argon, fracturing of rock, with release of argon, argon from cooling lava under water entering the water and entering other rocks, and argon from cooling lave entering subterranean water and being transported to other rock.

There are so many mechanisms that it is hard to know what pattern to expect, and one does not need to rely on any one of them such as more argon in the magma in the past to account for problems in K-Ar dating. Since even rocks with old K-Ar dates still absorb more argon from the atmosphere in short time periods, it follows that rocks should absorb quite a bit of argon over long time periods, especially at higher pressures.

In fact, if a rock can absorb only a ten millionth part of argon, that should be enough to raise its K-Ar age to over million years, assuming an average amounts of potassium. It wouldn't require many internal cracks to allow a ten millionth part of argon to enter.

Also, as the rock deforms under pressure, more cracks are likely to form and old ones are likely to close up, providing more opportunity for argon and other gases to enter.

I mentioned a number of possibilities that could cause K-Ar dates to be much older than the true ages of the rocks. Here is another way that K-Ar dates can be too old: If we assume the earth went through a catastrophe recently, then the crustal plates might have been agitated, permitting lava and argon to escape from the magma.

Thus a lot of argon would be filtering up through the crust. As intrusive flows of lava cooled inside the crust, they would have been in an environment highly enriched in argon, and thus would not have gotten rid of much of their argon.

Thus they would have hardened with a lot of argon inside. This would make them appear old. The same goes for extrusive flows on the surface, since argon would be filtering up through the earth and through the lava as it cooled.

In areas where tremendous tectonic activity has taken place, highly discordant values for the ages are obtained. The difficulties associated are numerous and listed as follows:.

There seems to be a great deal of question regarding the branching ratio for K40 into Ar40 and Ca But the value is not really known. The observed value is between 0. However, this doesn't remedy the situation and the ages are still too high [low? The geochronologists credit this to "argon leakage". There is far too much Ar40 in the earth for more than a small fraction of it to have been formed by radioactive decay of K This is true even if the earth really is 4.

In the atmosphere of the earth, Ar40 constitutes This is around times the amount that would be generated by radioactive decay over the age of 4.

Certainly this is not produced by an influx from outer space. Thus, a large amount of Ar40 was present in the beginning. Since geochronologists assume that errors due to presence of initial Ar40 are small, their results are highly questionable. Argon diffuses from mineral to mineral with great ease. It leaks out of rocks very readily and can move from down deep in the earth, where the pressure is large, and accumulate in an abnormally large amount in the surface where rock samples for dating are found.

They would all have excess argon due to this movement. This makes them appear older. Rocks from deeper in the crust would show this to a lesser degree. Also, since some rocks hold the Ar40 stronger than others, some rocks will have a large apparent age, others smaller ages, though they may actually be the same age.

If you were to measure Ar40 concentration as function of depth, you would no doubt find more of it near the surface than at deeper points because it migrates more easily from deep in the earth than it does from the earth into the atmosphere.

It is easy to see how the huge ages are being obtained by the KAr40 radiometric clock, since surface and near-surface samples will contain argon due to this diffusion effect.

Some geochronologists believe that a possible cause of excess argon is that argon diffuses into mineral progressively with time. Significant quantities of argon may be introduced into a mineral even at pressures as low as one bar. If such [excessive] ages as mentioned above are obtained for pillow lavas, how are those from deep-sea drilling out in the Atlantic where sea-floor spreading is supposed to be occurring?

Potassium is found to be very mobile under leaching conditions. This could move the "ages" to tremendously high values. Ground-water and erosional water movements could produce this effect naturally. Rocks in areas having a complex geological history have many large discordances.

In a single rock there may be mutually contaminating, potassium- bearing minerals. There is some difficulty in determining the decay constants for the KAr40 system.

Geochronologists use the branching ratio as a semi-emperical, adjustable constant which they manipulate instead of using an accurate half-life for K A number of recent lava flows within the past few hundred years yield potassium-argon ages in the hundreds of thousands of years range.

This indicates that some excess argon is present. Where is it coming from? And how do we know that it could not be a much larger quantity in other cases? If more excess argon were present, then we could get much older ages. It is true that an age difference in the hundreds of thousands of years is much too small to account for the observed K-Ar ages. But excess argon is commonly invoked by geologists to explain dates that are too old, so I'm not inventing anything new. Second, there may have been a lot more more argon in the magma in the past, and with each eruption, the amount decreased.

So there would have been a lot more excess argon in the past, leading to older ages. For rocks that are being dated, contamination with atmospheric argon is a persistent problem that is mentioned a number of times. Thus it is clear that argon enters rock easily. It is claimed that we can know if a rock has added argon by its spectrum when heated; different temperatures yield different fractions of argon.

It is claimed that the argon that enters from the atmosphere or other rocks, is less tightly bound to the crystal lattice, and will leave the rock at a lower temperature. But how do we know what happens over thousands of years? It could be that this argon which is initially loosely bound if it is so initially gradually becomes more tightly bound by random thermal vibrations, until it becomes undetectable by the spectrum technique. The fact that rock is often under high pressure might influence this process, as well.

The branching ratio problem We now consider in more detail one of the problems with potassium-argon dating, namely, the branching ratio problem. Here is some relevant information that was e-mailed to me. There are some very serious objections to using the potassium-argon decay family as a radiometric clock. The geochronologist considers the Ca40 of little practical use in radiometric dating since common calcium is such an abundant element and the radiogenic Ca40 has the same atomic mass as common calcium.

Here the actual observed branching ratio is not used, but rather a small ratio is arbitrarily chosen in an effort to match dates obtained method with U-Th-Pb dates. The branching ratio that is often used is 0. Thus we have another source of error for K-Ar dating. Henke criticized some statements in my article taken from Slusher about the branching ratio for potassium. Slusher asserted that the best known value of the branching ratio was not always used in computing K-Ar radiometric ages.

Unfortunately, Dalrymple says nothing about the calculation of the branching ratio. He simply gives the correct value for the K-Ar system. The issue is not just how well this was known in the past, but which value was actually used, and whether dates published in the past have been computed with the most recent value. Often values for constants are standardized, so that the values actually used may not be the most accurate known.

All that Dalrymple says is that his ages were all recomputed using the most accurate values of the constants. This implies that some of them were originally computed using less accurate values, which is similar to Slusher's point. He admits that Slusher's statements about it would have been true in the 's and early 's, but are no longer true. But he didn't say when the correct value for the branching ratio began to be used.

Even some figures from Faure, Principles of Isotope Geology, are based on another constant that is 2 or 3 percent too low, according to Dalrymple, and so there may be many ages in the literature that need revision by small amounts. However, Harland et al imply that nearly the correct value for the branching ratio has been known and used since the mid-fifties.

We now consider whether they can explain the observed dates. In general, the dates that are obtained by radiometric methods are in the hundreds of millions of years range. One can understand this by the fact that the clock did not get reset if one accepts the fact that the magma "looks" old, for whatever reason. That is, we can get both parent and daughter elements from the magma inherited into minerals that crystallize out of lava, making these minerals look old. Since the magma has old radiometric dates, depending on how much the clock gets reset, the crust can end up with a variety of younger dates just by partially inheriting the dates of the magma.

Thus any method based on simple parent to daughter ratios such as Rb-Sr dating is bound to be unreliable, since there would have to be a lot of the daughter product in the magma already.

And Harold Coffin's book Creation by Design lists a study showing that Rb-Sr dates are often inherited from the magma. Even the initial ratios of parent and daughter elements in the earth do not necessarily indicate an age as old as 4. Radioactive decay would be faster in the bodies of stars, which is where scientists assume the heavy elements formed.

Imagine a uranium nucleus forming by the fusion of smaller nucleii. At the moment of formation, as two nucleii collide, the uranium nucleus will be somewhat unstable, and thus very likely to decay into its daughter element. The same applies to all nucleii, implying that one could get the appearance of age quickly.

Of course, the thermonuclear reactions in the star would also speed up radioactive decay. But isochrons might be able to account for pre-existing daughter elements.

Furthermore, some elements in the earth are too abundant to be explained by radioactive decay in 4. Some are too scarce such as helium. So it's not clear to me how one can be sure of the 4. Why older dates would be found lower in the geologic column especially for K-Ar dating In general, potassium-argon dates appear to be older the deeper one goes in the crust of the earth. We now consider possible explanations for this. There are at least a couple of mechanisms to account for this.

In volcano eruptions, a considerable amount of gas is released with the lava. This gas undoubtedly contains a significant amount of argon Volcanos typically have magma chambers under them, from which the eruptions occur.

It seems reasonable that gas would collect at the top of these chambers, causing artificially high K-Ar radiometric ages there. In addition, with each successive eruption, some gas would escape, reducing the pressure of the gas and reducing the apparent K-Ar radiometric age.

Thus the decreasing K-Ar ages would represent the passage of time, but not necessarily related to their absolute radiometric ages. As a result, lava found in deeper layers, having erupted earlier, would generally appear much older and lava found in higher layers, having erupted later, would appear much younger. This could account for the observed distribution of potassium-argon dates, even if the great sedimantary layers were laid down very recently. In addition, lava emerging later will tend to be hotter, coming from deeper in the earth and through channels that have already been warmed up.

This lava will take longer to cool down, giving more opportunity for enclosed argon to escape and leading to younger radiometric ages. Another factor is that rocks absorb argon from the air. It is true that this can be accounted for by the fact that argon in the air has Ar36 and Ar40, whereas only Ar40 is produced by K-Ar decay. But for rocks deep in the earth, the mixture of argon in their environment is probably much higher in Ar40, since only Ar40 is produced by radioactive decay.

As these rocks absorb argon, their radiometric ages would increase. This would probably have a larger effect lower down, where the pressure of argon would be higher. Or it could be that such a distribution of argon pressures in the rocks occurred at some time in the past.

This would also make deeper rocks tend to have older radiometric ages. Recent lava flows often yield K-Ar ages of about , years. This shows that they contain some excess argon, and not all of it is escaping.

If they contained a hundred times more excess argon, their K-Ar ages would be a hundred times greater, I suppose. And faster cooling could increase the ages by further large factors. I also read of a case where a rock was K-Ar dated at 50 million years, and still susceptible to absorbing argon from the air. This shows that one might get radiometric ages of at least 50 million years in this way by absorbing Ar40 deep in the earth without much Ar36 or Ar38 present.

If the pressure of Ar40 were greater, one could obtain even greater ages. Yet another mechanism that can lead to decreasing K-Ar ages with time is the following, in a flood model: One can assume that at the beginning of the flood, many volcanoes erupted and the waters became enriched in Ar Then any lava under water would appear older because its enclosed Ar40 would have more trouble escaping. As time passed, this Ar40 would gradually pass into the atmosphere, reducing this effect and making rocks appear younger.

In addition, this would cause a gradient of Ar40 concentrations in the air, with higher concentrations near the ground. This also could make flows on the land appear older than they are, since their Ar40 would also have a harder time escaping. Plaisted wants to give his readers the impression that argon can readily move in and out of minerals and, therefore, the gas is too volatile for radiometric dating. Specifically, he quotes one of his anonymous friends that claims that argon easily diffuses from minerals p.

Of course, these statements are inaccurate generalizations. Geochronologists are aware that excess argon may accumulate on mineral surfaces and the surface argon would be removed before analysis. However, Henke admits that this can happen in some cases. He states that geologists are aware of this problem, and make allowances for it. But it is more difficult to remove argon that has deposited on cracks in the mineral, which can be difficult to see.

Henke referenced Davis A. Young frequently, but I was not able to find Young referenced in any of the other sources I examined except Dalrymple Henke states that hornblendes retain argon very well, but then later says that they can easily absorb excess argon. Geologists also recognize that heating causes argon to leave minerals, and that dissolved argon in a mineral that does not escape will become incorporated into it, artificially increasing its K-Ar age.

I will comment more on this below, but a few comments now are appropriate. For a temperature of K 27 degrees C , there is no significant argon loss from biotite. At K degrees C , there is a slow but significant diffusion rate. At K degrees C , loss of argon is quite rapid. To lose one percent in one year requires a temperature of nearly degrees centigrade.

Thus the temperature does not have to be very high for argon to move through rock. This also justifies Slusher's statements about argon moving in and out of rocks with ease. However, it does not seem likely that sedimentary rocks would be this hot very often, except near lava or magma flows. But argon does not need to move through all rock in order to influence radiometric dates, it only has to reach ancient lava flows. This it can do by following the path of the ancient lava flow itself, coming up along the path of the magma.

As the magma or lava cools, this path will consist entirely of hot magma or lava, and so the argon will have a free path, and will continue to enter the magma as it cools.

Thus in many cases, the lava or magma will never completely degas, and extra argon will end up trapped in the cooled rock. This will result in artificially increased K-Ar ages.

Many ancient lava flows are relatively flat, in contrast to modern ones. Also, they appear to have been covered over quickly.

The flatness means that the lava is a contiguous mass, and can still be reached from the hot magma by a continuous path of hot rock. The fact that they soon are covered over means that the argon has a hard time escaping vertically from the lava, so argon coming up from the mantle will tend to enter the cooling rock.

Both facts will tend to produce artificially high K-Ar ages in these flows which will not be seen in modern lava flows in the same manner. Modern lava flows often come down the sides of volcanoes, and thus become separated from their source by large distances. Also, they do not get quickly buried by additional sediment.

Thus modern lava flows are not subject to the same mechanism of artificial increases in their K-Ar ages as are ancient ones. Also, it is reasonable to assume that as argon leaves the mantle in successive eruptions, the amount of argon remaining is reduced, so that later lava flows are less susceptible to such artificial increases in age.

The path of magma also becomes longer for later flows, and the magma probably also is a little cooler, inhibiting argon flow.

Thus later lava flows give younger K-Ar ages. Another point to note is that even after it cools, the lava or magma may still have many cracks in it, permitting argon to flow. This argon will tend to deposit on the surface of minerals, but with the passage of time it will tend to diffuse into the interior, even if only a very small distance. This is especially true as the lava is cooling. This will make it more difficult to detect this added argon by the spectrum test described below.

Also, the diffusion of argon in cracks and channels of a mineral is likely much less temperature-dependent than diffusion through unbroken regions of the mineral, since diffusion through cracks and channels simply involves jumps through the air. By a combination of diffusion through cracks and channels, and short passages through unbroken regions of the mineral, argon may be able to reach a considerable distance into the mineral.

At low temperatures, this may become the dominant means by which argon diffuses into a mineral, but the effect of this kind of diffusion at low temperatures may not be evident until many years have passed. Thus it may take experiments lasting 50 or years at low temperatures to detect the effects of this kind of diffusion of argon, which however could be significantly increasing the K-Ar ages of minerals over long time periods.

Dickin Radiogenic Isotope Geology, , p. It has been claimed that this can be accomplished by preheating samples under vacuum or by leaching them briefly with hydroflouric acid, or both However Armstrong has questioned whether atmospheric argon, that has been acquired by minerals over a long interval of time, can be removed by this method.

Thus there is some means by which argon from outside can become very firmly embedded within a rock, and one would expect that the quantity of this argon would continue to increase over time, giving anomalously old K-Ar ages. Added atmospheric argon can be detected, because the ratio of argon 40 to argon 36 for atmospheric argon is But argon 40 coming up from the mantle and diffusing into a mineral would not be detectable in this way, because it has a higher ratio of argon 40 to argon This shows that rocks can adsorb a large amount of argon relative to the argon needed to give them old K-Ar ages, and also suggests that old K-Ar ages can be produced by external argon from the mantle.

Over a long period of time, adsorbed argon will tend to diffuse into the rock, and thus it will be possible for even more argon to be deposited on the surface, increasing K-Ar ages even more. Generally, excess 40Ar is observed in minerals that have been exposed to a high partial pressure of argon during regional metamorphism, in pegmatites The argon that may either diffuse into the minerals or may be occluded within them is derived by outgassing of K-bearing minerals in the crust and mantle of the Earth.

The presence of excess 40Ar increases K-Ar dates and may lead to overestimates of the ages of minerals dated by this method. Let us consider the question of how much different dating methods agree on the geologic column, and how many measurements are anomalous, since these points are often mentioned as evidences of the reliability of radiometric dating.

It takes a long time to penetrate the confusion and find out what is the hard evidence in this area. In the first place, I am not primarily concerned with dating meteorites, or precambrian rocks. What I am more interested in is the fossil-bearing geologic column of Cambrian and later age. Now, several factors need to be considered when evaluating how often methods give expected ages on the geologic column.

Some of these are taken from John Woodmoreappe's article on the subject, but only when I have reason to believe the statements are also generally believed.

First, many igneous formations span many periods, and so have little constraint on what period they could belong to. The same applies to intrusions.

In addition, some kinds of rocks are not considered as suitable for radiometric dating, so these are typically not considered. Furthermore, it is at least possible that anomalies are under-reported in the literature. Finally, the overwhelming majority of measurements on the fossil bearing geologic column are all done using one method, the K-Ar method.

And let me recall that both potassium and argon are water soluble, and argon is mobile in rock. Thus the agreement found between many dates does not necessarily reflect an agreement between different methods, but rather the agreement of the K-Ar method with itself.

For example, if 80 percent of the measurements were done using K-Ar dating, and the other 20 percent gave random results, we still might be able to say that most of the measurements on a given strata agree with one another reasonably well.

So to me it seems quite conceivable that there is no correlation at all between the results of different methods on the geologic column, and that they have a purely random relationship to each other.

Let us consider again the claim that radiometric dates for a given geologic period agree with each other. I would like to know what is the exact or approximate information content of this assertion, and whether it could be or has been tested statistically.

It's not as easy as it might sound. Let's suppose that we have geologic periods G Let's only include rocks whose membership in the geologic period can be discerned independent of radiometric dating methods.

Let's also only include rocks which are considered datable by at least one method, since some rocks I believe limestone are considered not to hold argon, for example.

Now, we can take a random rock from Gi. We will have to restrict ourselves to places where Gi is exposed, to avoid having to dig deep within the earth. Let's apply all known dating methods to Gi that are thought to apply to this kind of rock, and obtain ages from each one. Then we can average them to get an average age for this rock. We can also compute how much they differ from one another. Now we have to be careful about lava flows -- which geologic period do they belong to?

What about rocks that are thought not to have their clock reset, or to have undergone later heating episodes?

Just to make the test unbiased, we will assign altitude limits to each geologic period at each point on the earth's surface at least in principle and include all rocks within these altitude limits within Gi, subject to the condition that they are datable. For each geologic period and each dating method, we will get a distribution of values. We will also get a distribution of averaged values for samples in each period. Now, some claim is being made about these distributions.

It is undoubtedly being claimed that the mean values ascend as one goes up the geologic column. It is also being claimed that the standard deviations are not too large. It is also being claimed that the different methods have distributions that are similar to one another on a given geologic period. The only correlation I know about that has been studied is between K-Ar and Rb-Sr dating on precambrian rock. And even for this one, the results were not very good.

This was a reference by Hurley and Rand, cited in Woodmorappe's paper. As far as I know, no study has been done to determine how different methods correlate on the geologic column excluding precambrian rock.

The reason for my request is that a correlation is not implied by the fact that there are only 10 percent anomalies, or whatever. I showed that the fact that the great majority of dates come from one method K-Ar and the fact that many igneous bodies have very wide biostratigraphic limits, where many dates are acceptable, makes the percentage of anomalies irrelevant to the question I am asking.

And since this agreement is the strongest argument for the reliability of radiometric dating, such an assumption of agreement appears to be without support so far. The question of whether different methods correlate on the geologic column is not an easy one to answer for additional reasons.

Since the bulk of K-Ar dates are generally accepted as correct, one may say that certain minerals are reliable if they tend to give similar dates, and unreliable otherwise.

We can also say that certain formations tend to give reliable dates and others do not, depending on whether the dates agree with K-Ar dates. Thus we can get an apparent correlation of different methods without much of a real correlation in nature.

It's also possible for other matter to be incorporated into lava as it rises, without being thoroughly melted, and this matter may inherit all of its old correlated radiometric dates. Coffin mentions that fission tracks can survive transport through lava, for example. It may also be that lava is produced by melting the bottom of continents and successively different layers are melted with time, or there could be a tendency for lighter isotopes to come to the top of magma chambers, making the lava there appear older.

But anyway, I think it is important really to know what patterns appear in the data to try to understand if there is a correlation and what could be causing it. Not knowing if anomalies are always published makes this harder. It is often mentioned that different methods agree on the K-T boundary, dated at about 65 million years ago. This is when the dinosaurs are assumed to have become extinct.

This agreement of different methods is taken as evidence for a correlation between methods on the geologic column. One study found some correlated dates from bentonite that are used to estimate the date of the K-T boundary. I looked up some information on bentonite. It is composed of little glass beads that come from volcanic ash.

This is formed when lava is sticky and bubbles of gas in it explode. So these small particles of lava cool very fast. The rapid cooling might mean that any enclosed argon is retained, but if not, the fact that this cooling occurs near the volcano, with a lot of argon coming out, should guarantee that these beads would have excess argon. As the gas bubble explodes, its enclosed argon will be rushing outward along with these tiny bubbles as they cool. This will cause them to retain argon and appear too old.

In addition, the rapid cooling and the process of formation means that these beads would have Rb, Sr, U, and Pb concentrations the same as the lava they came from, since there is no chance for crystals to form with such rapid cooling.

So to assume that the K-Ar dates, Rb-Sr dates, and U-Pb dates all reflect the age of the lava, one would have to assume that this lava had no Sr, no Pb, and that all the argon escaped when the beads formed.

Since the magma generally has old radiometric ages, I don't see how we could have magma without Pb or Sr. So to me it seems to be certain that these ages must be in error. Furthermore, the question arises whether bentonite always gives correlated ages, and whether these ages always agree with the accepted ages for their geologic period.

I believe that bentonite occurs in a number of formations of different geologic periods, so this could be checked. If bentonite does not always give correlate and correct ages, this calls into question its use for dating the K-T boundary.

Let me briefly comment on a couple of other articles at Tim Thompson's page. This is at least close to what I am looking for. However, it would be better to date all five craters by all four different methods, and see what the agreement is.

It is also possible that each crater gives a scatter of dates, and the best ones were selected. Furthermore, it is possible that the craters were chosen as those for which the dating methods agreed. Possible other sources of correlation Note that if there are small pockets in crystals where both parent and daughter product can accumulate from the lava, then one can inherit correlated ages from the lava into minerals.

Thus even the existence of correlations is not conclusive evidence that a date is correct. Anomalies of radiometric dating If a date does not agree with the expected age of its geologic period, and no plausible explanation can be found, then the date is called anomalous. But if we really understand what is going on, then we should be able to detect discrepant dates as they are being measured, and not just due to their divergence from other dates.

Geologists often say that the percentage of anomalies is low. But there are quite a number of rather outstanding anomalies in radiometric dating that creationists have collected. These anomalies are reported in the scientific literature. For example, one isochron yielded a date of 10 billion years. A Rb-Sr isochron yielded a date of 34 billion years. K-Ar dates of 7 to 15 billion years have been recorded. It's also not uncommon for two methods to agree and for the date to be discarded anyway.

Samples with flat plateaus which should mean no added argon can give wrong dates. Samples giving no evidence of being disturbed can give wrong dates. Samples that give evidence of being disturbed can give correct dates.

The number of dates that disagree with the expected ages is not insignificant. I don't know what the exact percentage is. Many dates give values near the accepted ones. But even these often differ from one another by 10 or 20 percent. And quite a few other dates are often much, much farther off. Whatever is making some of these dates inaccurate could be making all of them inaccurate. Age estimates on a given geological stratum by different radiometric methods are often quite different sometimes by hundreds of millions of years.

There is not absolutely reliable long-term radiological "clock". The uncertainties inherent in radiometric dating are disturbing to geologists and evolutionists As proof of the unreliability of the radiometric methods consider the fact that in nearly every case dates from recent lava flows have come back excessively large. One example is the rocks from the Kaupelehu Flow, Hualalai Volcano in Hawaii which was known to have erupted in These rocks were dated by a variety of different methods.

Of 12 dates reported the youngest was million years and the oldest was 2. The dates average 1. Another source said that about 5 or 6 of the historic lava flows give ages in the hundreds of thousands of years.

Geologists explain the Kaupelehu date by the lava being cooled rapidly in deep ocean water and not being able to get rid of its enclosed argon. Instead, the uncertainty grows as more and more data is accumulated Woodmorappe also mentions that very self-contradictory age spreads in the Precambrian era are common. In addition, Woodmorappe gives over sets of dates "that are in gross conflict with one another and with expected values for their indicated paleontological positions.

This does not include dates from minerals that are thought to yield bad dates, or from igneous bodies with wide biostrategraphic ranges, where many dates are acceptable. He states that the number of dates within range are less than the number of anomalies, except for the Cenozoic and Cretaceous. When one adds in the fact that many anomalies are unreported, which he gives evidence for, the true distribution is anyone's guess. There have been criticisms of John Woodmorappe's study, but no one has given any figures from the literature for the true percentage of anomalies, with a definition of an anomaly, or the degree of correlation between methods.

Steven Schimmrich's review of this study often concerns itself with John W's presentation of geologists explanation for anomalies, and not with the percentage of anomalies; the later is my main concern.

The carbon age of the buried trees is only years, but some of the overlying volcanic material has a ,year potassium-argon age. A similar situation is reported in the December issue of Creation ex nihilo in which lava with a K-Ar age of about 45 million years overlays wood that was carbon dated by 3 laboratories using AMS dating to about 35, years. Still another evidence for problems with radiometric dating was given in a recent talk I attended by a man who had been an evolutionist and taken a course in radiometric dating.

The teacher gave 14 assumptions of radiometric dating and said something like "If creationists got a hold of these, they could cut radiometric dating to pieces. Another evidence that all is not well with radiometric dating is given in the following quote from Coffin p. Many sedimentary uranium ores are not. Since equilibrium should be reached in 1 million years, this is a problem for sediments that are assumed to be older than 1 million years.

On another point, if we can detect minerals that were not molten with the lava, as has been claimed, then this is one more reason why there should be no anomalies, and radiometric dating should be a completely solved problem. But that does not appear to be the case, at least especially on the geologic column. I'm not claiming that anomalous results are being hidden, just that the agreement of a mass of results, none of which has much claim to reliability, does not necessarily mean much.

Picking out a few cases where radiometric dates appear to be well-behaved reminds me of evolutionary biologists focusing on a few cases where there may be transitional sequences. It does not answer the overall question. And as I said above, I'm also interested to know how much of the fossil-bearing geologic column can be dated by isochrons, and how the dates so obtained compare to others. Gerling et al called attention to some chlorites yielding K-Ar dates of 7 to 15 b.

It had been noted that some minerals which yield such dates as beryl, cordierite, etc. They also pointed out that for the anomalies to be accounted for by excess argon, unreasonably high partial pressures of Ar during crystallization would have to be required.

They concluded by suggesting some unknown nuclear process which no longer operates to have generated the Ar. This implies that excess argon is coming from somewhere. Here is another quote from Woodmorappe about isochrons, since some people think that mixing scenarios or other age-altering scenarios are unlikely:. If this condition does not hold, invalid ages and intercepts are obtained. Models yield isochron ages that are too high, too low, or in the future, sometimes by orders of magnitude.

The fact that the only "valid" K-Ar isochrons are those for which the concentration of non-radiogenic argon Ar36 is constant, seems very unusual. This suggests that what is occuring is some kind of a mixing phenomenon, and not an isochron reflecting a true age.

We have analyzed several devitrified glasses of known age, and all have yielded ages that are too young. Some gave virtually zero ages, although the geologic evidence suggested that devitrification took place shortly after the formation of a deposit. Why a low anomaly percentage is meaningless One of the main arguments in favor of radiometric dating is that so many dates agree with each other, that is, with the date expected for their geologic period.

But it's not evident how much support this gives to radiometric dating. If a rock dates too old, one can say that the clock did not get reset. If it dates too young, one can invoke a later heating event. Neither date would necessarily be seen as anomalous.

If lava intrudes upon geologic period X, then any date for the lava of X or later will not be seen as anomalous. And even if the date is one or two geologic periods earlier, it may well be close enough to be accepted as non-spurious.

If one does not know the geologic period of a rock by other means, then of course one is likely to date it to find out, and then of course the date agrees with the geologic period and this will not be seen as anomalous. So it is difficult to know what would be a reasonable test for whether radiometric dating is reliable or not. The percentage of published dates that are considered as anomalous has little bearing on the question.

The biostrategraphic limits issue The issue about igneous bodies may need additional clarification. If a lava flow lies above geologic period A and below B, then allowable ages are anything at least as large as A and no larger than B. This is called the biostratigraphic limit of the flow. Now, according to Woodmorappe's citations, many lava flows have no such limits at all, and most of them have large limits. For example, a flow lying on precambrian rock with nothing on top would have no limits on its dates.

And such flows often have a large internal scatter of dates, but these dates are not considered as anomalies because of the unrestricted biostratigraphic limit.

Other flows with wide biostratigraphic limits have weak restrictions on allowable dates. This is one reason why just reporting the percentage of anomalies has little meaning.

Thus these ages, though they generally have a considerable scatter, are not considered as anomalies. He cites another reference that most igneous bodies have wide biostrategraphic limits. Thus just by chance, many dates will be considered within the acceptable ranges.

Again, the percentage of anomalies means nothing for the reliability of radiometric dating. Now, igneous bodies can be of two types, extrusive and intrusive. Extrusive bodies are lava that is deposited on the surface. These cool quickly and have small crystals and form basalt. Intrusive bodies are deposited in the spaces between other rocks. These cool more slowly and have larger crystals, often forming granite.

Both of these tend on the average to have wide biostrategraphic limits, meaning that a large spread of ages will be regarded as non-anomalous. And if we recall that most radiometric dating is done of igneous bodies, one sees that the percentage of anomalies is meaningless. Thus we really need some evidence that the different methods agree with each other. To make the case even stronger, "Many discrepant results from intrusives are rationalized away immediately by accepting the dates but reinterpreting the biostrategraphic bracket," according to John Woodmorappe.

This of course means that the result is no longer anomalous, because the geologic period has been modified to fit the date. Finally, the fact that the great majority of dates are from one method means that the general but not universal agreement of K-Ar dating with itself is sufficient to explain the small percentange of anomalies if it is small. Preponderance of K-Ar dating Now, the point about agreement is that whatever figure is given about how often ages agree with the expected age, is consistent with the fact that there is no agreement at all between K-Ar and other methods, since so many measurements are done using K-Ar dating.

And one of the strongest arguments for the validity of radiometric dating is that the methods agree. So when one combines all of the above figures, the statement that there are only 10 percent anomalies or 5 percent or whatever, does not have any meaning any more.

This statement is made so often as evidence for the reliability of radiometric dating, that the simple evidence that it has no meaning, is astounding to me.

I don't object to having some hard evidence that there are real agreements between different methods on the geologic column, if someone can provide it. The precambrian rock is less interesting because it could have a radiometric age older than life, but this is less likely for the rest of the geologic column. It's not surprising that K-Ar dates often agree with the assumed dates of their geological periods, since the dates of the geological periods were largely inferred from K-Ar dating.

By the way, Ar-Ar dating and K-Ar dating are essentially the same method, so between the two of them we obtain a large fraction of the dates being used. Before the discovery of radioactivity in the late nineteenth century, a geological time scale had been developed on the basis of estimates for the rates of geological processes such as erosion and sedimentation, with the assumption that these rates had always been essentially uniform. On the basis of being unacceptably old, many geologists of the time rejected these early twentieth century determinations of rock age from the ratio of daughter to radioactive parent large.

By , increased confidence in radioisotope dating techniques and the demands of evolution theory for vast amounts of time led to the establishment of an expanded geological time scale. The construction of this time scale was based on about radioisotope ages that were selected because of their agreement with the presumed fossil and geological sequences found in the rocks. Igneous rocks are particularly suited to K-Ar dating. The crucial determiners are therefore volcanic extrusive igneous rocks that are interbedded with sediments, and intrusive igneous rocks that penetrate sediments.

This verifies what I said about almost all of the dates used to define correct ages for geologic periods being K-Ar dates. Also, the uncertainty in the branching ratio of potassium decay might mean that there is a fudge factor in K-Ar ages of up to a third, and that the occasional agreements between K-Ar ages and other ages are open to question. So the point is that there is now no reason to believe that radiometric dating is valid on the geologic column.

I mentioned the presence of excess argon 40 in a sample as a problem leading to artificially old K-Ar dates. Henke states in a reply to me, concerning the problem of detecting excess argon,. It is possible that such isochrons are not often done. One cannot always use an isochron, since many minerals may have about the same K and Ar40 concentrations, and there may be some fractionation of argon among the minerals.

It's not clear to me if this three dimensional plot always works, and how often it is used. I was not able to find any mention of it in Faure or Dickin It is true that by using additional isotopes if they are sufficiently abundant and do not fractionate , one can often detect mixings of multiple sources.

My point was that the usual mixing test can only detect two sources. But since these multiple mixing tests are more difficult and expensive, they may not be done very often. One also has to know which isotopes to examine. I was suprised that Dalrymple said nothing about mixings invalidating isochrons.

Dalrymple goes to great lengths to explain this away, but I think this figure is very telling, and find his explanations unconvincing. It is also remarkable that we have a test for mixing, which is commonly cited in support of the accuracy of radiometric dating, but when it gives contrary results, it is simply ignored. It is a fundamental assumption of the mantle isochron model that neither isotope nor elemental ratios are perturbed during magma ascent through the crust.

However, it is now generally accepted that this assumption is not upheld with sufficient reliability to attribute age significance to erupted isochrons. Dickin suggests that mixings may contribute to such isochrons.

It seems reasonable, then, that mixings may be affecting all Rb-Sr isochrons in igneous rock. Your hypothetical example in "More Bad News for Radiometric Dating" is often hard to follow, but it is clearly invalid.

This example is given to show that a mixing of three sources cannot be detected by the usual two sources test. It is not intended to be natural, but to demonstrate a mathematical fact. There is a lot of flexibility in the design of such examples, as I indicate, and it is reasonable to assume that some of these examples would be natural. It's the responsibility of the geologist to show that such mixings have not occurred. To really understand what's going on you have to sample the recent works of many different authors.

You have to follow arguments between experts on different issues and see where they go. The successive layers of rock represent successive intervals of time. Since certain species of animals existed on Earth at specific times in history, the fossils or remains of such animals embedded within those successive layers of rock also help scientists determine the age of the layers.

Similarly, pollen grains released by seed-bearing plants became fossilized in rock layers. If a certain kind of pollen is found in an archaeological site, scientists can check when the plant that produced that pollen lived to determine the relative age of the site. Absolute dating methods are carried out in a laboratory.

Absolute dates must agree with dates from other relative methods in order to be valid. The most widely used and accepted form of absolute dating is radioactive decay dating.

Radioactive decay refers to the process in which a radioactive form of an element is converted into a nonradioactive product at a regular rate. The nucleus of every radioactive element such as radium and uranium spontaneously disintegrates over time, transforming itself into the nucleus of an atom of a different element.

In the process of disintegration, the atom gives off radiation energy emitted in the form of waves. Hence the term radioactive decay. Each element decays at its own rate, unaffected by external physical conditions. By measuring the amount of original and transformed atoms in an object, scientists can determine the age of that object. Invisible, high-energy particles that constantly bombard Earth from all directions in space.

Also known as tree-ring dating, the science concerned with determining the age of trees by examining their growth rings. Measurement of the time it takes for one-half of a radioactive substance to decay. The predictable manner in which a population of atoms of a radioactive element spontaneously disintegrate over time. Study of layers of rocks or the objects embedded within those layers. The age of the remains of plants, animals, and other organic material can be determined by measuring the amount of carbon contained in that material.

Carbon, a radioactive form of the element carbon, is created in the atmosphere by cosmic rays invisible, high-energy particles that constantly bombard Earth from all directions in space. When carbon falls to Earth, it is absorbed by plants. These plants are eaten by animals who, in turn, are eaten by even larger animals. Eventually, the entire ecosystem community of plants and animals of the planet, including humans, is filled with a concentration of carbon As long as an organism is alive, the supply of carbon is replenished.

When the organism dies, the supply stops, and the carbon contained in the organism begins to spontaneously decay into nitrogen The time it takes for one-half of the carbon to decay a period called a half-life is 5, years. By measuring the amount of carbon remaining, scientists can pinpoint the exact date of the organism's death.

The range of conventional radiocarbon dating is 30, to 40, years. With sensitive instrumentation, this range can be extended to 70, years. In addition to the radiocarbon dating technique, scientists have developed other dating methods based on the transformation of one element into another. These include the uranium-thorium method, the potassium-argon method, and the rubidium-strontium method.

Iamges: how is carbon dating used to determine the age of a substance

how is carbon dating used to determine the age of a substance

This would seem to imply that the problem of radiometric dating has been solved, and that there are no anomalies. United States Geological Survey. Out of every trillion Carbon atoms in the atmosphere, only about one is 14c.

how is carbon dating used to determine the age of a substance

One example is the rocks from the Kaupelehu Flow, Hualalai Volcano in Hawaii which was known to have erupted in

how is carbon dating used to determine the age of a substance

We noted above that there also seems to be a substancd built into potassium-argon dating, namely, the branching ratio estimate. By datnig the amount of carbon remaining, scientists can pinpoint the exact date of the organism's death. Why methods in general are inaccurate I admit this is a very beautiful theory. Now, there is probably not much argon in a rock to start with. So if we take a lava flow and date several minerals for how is carbon dating used to determine the age of a substance one knows the daughter element is excluded, we should always get the exact same date, and it should agree acceptable age gap in dating the accepted age of sibstance geological period. Merely giving the old-age assumption the benefit of the doubt, however, by assuming the lowest reasonable alkalinity and temperatures for the life of the specimen, retains amino acid racemization as a powerful tool for falsifying million and billion year dates, especially when combined with extant soft tissue and plentiful radiocarbon. Recent lava flows often yield K-Ar ages of aboutyears.